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Superoxide (O2
•−) is implicated in inflammatory states including arteriosclerosis and ischemia–reperfusion injury.

Cobalamin (Cbl) supplementation is beneficial for treatingmany inflammatorydiseases andalso provides protection
in oxidative-stress-associated pathologies. Reduced Cbl reacts with O2

•− at rates approaching that of superoxide
dismutase (SOD), suggesting a plausible mechanism for its anti-inflammatory properties. Elevated homocysteine
(Hcy) is an independent risk factor for cardiovasculardisease andendothelial dysfunction.Hcy increasesO2

•− levels in
human aortic endothelial cells (HAEC). Here,we explore the protective effects of Cbl inHAEC exposed to variousO2

•−

sources, including increased Hcy levels. Hcy increased O2
•− levels (1.6-fold) in HAEC, concomitant with a 20%

reduction in cell viability and a 1.5-fold increase in apoptotic death. Pretreatment of HAEC with physiologically
relevant concentrations of cyanocobalamin (CNCbl) (10–50 nM) prevented Hcy-induced increases in O2

•− and cell
death. CNCbl inhibited both Hcy and rotenone-induced mitochondrial O2

•− production. Similarly, HAEC challenged
with paraquat showed a 1.5-fold increase in O2

•− levels and a 30% decrease in cell viability, both of which were
preventedwithCNCblpretreatment. CNCbl also attenuatedelevatedO2

•− levels after exposure of cells to aCu/Zn-SOD
inhibitor. Our data suggest that Cbl acts as an efficient intracellular O2

•− scavenger.
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Cobalamins (Cbl; vitamin B12 derivatives) are micronutrients
essential for the synthesis of methylcobalamin (MeCbl) and adeno-
sylcobalamin (AdoCbl), the respective cofactors for cytosolic methi-
onine synthase (MS) and mitochondrial L-methylmalonyl-CoA
mutase. Reduced Cbl cofactors in the catalytic cycles are sensitive to
oxidation [1,2]; hence, both MS and L-methylmalonyl-CoA mutase are
inactivated by reactive oxygen species (ROS). MS plays a key role in
the metabolism of homocysteine (L-Hcy, Hcy), a by-product of
methylation reactions that is metabolized to cysteine or methionine.
In endothelial cells, Hcy metabolism depends exclusively on Cbl-
dependent MS [3]. Impaired MS activity due to Cbl deficiency results
in elevated Hcy, a risk factor for cardiovascular disease [4]. Hcy also
elevates O2

•− levels, leading to increased oxidative stress, which
further hinders Cbl's metabolism. Importantly, Cbl exhibits antioxi-
dant effects in Hcy-independent systems [5,6]. Birch et al. reported
that Cbl protects against hydrogen peroxide-induced oxidative stress
[5], and our preliminary experiments demonstrated the potential of
Cbl to attenuate elevated O2

•− levels [6].
Cbl deficiency is a common and significant public health problem,
particularly among the elderly [4]. Up to 40% of the elderly U.S.
population is B12 deficient [7]. After folate fortification in food, Cbl
deficiency became the primary modifiable cause of hyperhomocys-
teinemia [8]. Vitamin supplements containing cyanocobalamin
(CNCbl, vitamin B12) decrease low-density lipoprotein oxidation in
both healthy individuals and patients with coronary artery disease [9].
Cbl supplementation is also beneficial in treating many inflammatory
diseases, and there is accumulating evidence that Cbl can protect
against oxidative stress-associated pathologies [10–16]. Levels of the
Cbl transport protein transcobalamin increase during inflammation
[17,18], concomitant with NF-κB activation induced by various
stimuli, including ROS. Taken together, these studies suggest a
potential role for Cbl in the regulation of inflammatory processes
[15,19].

Recently we demonstrated that the reduced form of Cbl, cob(II)
alamin (Cbl(II)) reacts with O2

•− with a second-order rate constant of
7×108 M−1 s−1, close to that observed for superoxide dismutase
itself (Cu/Zn-SOD; k=2×109 M−1 s−1) [6]. Given that Cbl(II) is a
major intracellular Cbl form [2], we hypothesized that scavenging of
O2
•− by Cbl is an important mechanism by which Cbl can protect cells

against oxidative stress.
O2
•− is a free radical product of a one-electron reduction of oxygen.

It is produced by mitochondrial and reticular membrane electron
transport systems, or enzymes including NADPH oxidase and
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xanthine oxidase and uncoupled nitric oxide synthase [20]. Exposing
cells to Hcy also results in elevated levels of O2

•−[21,22]. O2
•− is

involved in both physiological and pathological processes [23], with
O2
•− overproduction implicated in a range of inflammatory states such

as rheumatoid arthritis, osteoarthritis, arteriosclerosis, and ischemia–
reperfusion [24]. The toxicity of increased O2

•− levels is evident in
homozygous SOD2 knockout mice, which die within the first 3 weeks
of age [25]. O2

•− can inactivate a range of enzymes in addition to
causing direct molecular damage by initiating lipoperoxidation,
leading to the destruction of neurotransmitters and hormones, and
DNA single-strand damage [20]. Moreover, O2

•− can generate
peroxynitrite via its reaction with nitric oxide and hydrogen peroxide
via dismutation. From these species, stronger damaging oxidants can
be generated, such as the carbonate, hydroxyl and nitrogen dioxide
radicals, and oxoferryl complexes [26]. Therefore a tight control of O2

•−

levels is paramount to prevent the formation of secondary oxidants.
In this work we describe the protective effects of physiologically

relevant concentrations of CNCbl against elevated intracellular O2
•−

levels induced by paraquat and L-Hcy and the associated cell injury in
primary human aortic endothelial cells (HAEC). Both paraquat and L-
Hcy induced elevated O2

•− levels that paralleled cell death and which
were prevented by pretreating the cells with CNCbl before the insult.
Elevated O2

•− levels were also observed in cells treated with the Cu/Zn-
SOD inhibitor diethyldithiocarbamate (DETC) [27] and were similarly
attenuated by CNCbl pretreatment.

Materials and methods

Synthesis of L- and D-Hcy

L- or D-Homocysteine thiolactone (20 mg, 130 μmol) was dissolved
in NaOH (5 N, 200 μl) and incubated at 37 °C for 10 min. The solution
was chilled and neutralized with HCl (5 N, 200 μl). PBS was added to a
total volume of 1 ml and the solution bubbled with N2 for 10 min [28].
The yield was typically N95%, determined by quantifying the reduced
thiol groups by the Ellman assay [29].

Cell culture

Primary HAEC clones were a generous gift from Donald W. Jacobsen
(Lerner Research Institute, The Cleveland Clinic). Each endothelial cell
isolate was stored and passaged separately. HAEC were cultured in
fibronectin-coated flasks in M199 supplemented with Lonza Bullet kit
supplements for EBM-2Endothelial BasalMedium inahumidified95%air,
5% CO2 incubator at 37 °C. For experiments cells were seeded onto 96- or
6-well plates at a density of 12,000–20,000 cells/cm2 and used up to
passage 6.

Intracellular Cbl content and Cbl uptake

For Cbl-uptake experiments, preconfluent HAEC were incubated
with 0.2 nM 57Co-CNCbl. Adherent cells were harvested at various time
points up to 24 h and thoroughlywashedwith PBS. The intracellular Cbl
uptakewas determined by counting the cell-associated radioactivity. To
measure total intracellular Cbl content, preconfluent HAEC were
incubated with or without varying concentrations of CNCbl for 24 h,
and intracellular Cbl content was determined by the SimulTRAC
radioassay.

Assessing ROS production

Cells with or without CNCbl pretreatment (500 pM–10 μM) were
incubated with L-Hcy (100 or 150 μM), H2O2 (50–200 μM), paraquat
(1.5 mM), rotenone (5 μM), or culture medium alone. To assess
general ROS production, cells were incubated with the oxidation-
sensitive fluorescent probe dichlorofluorescein acetate (DCFA; 3 μM)
for the duration of the L-Hcy or H2O2 treatment. For the assessment
of O2

•− production, cells were incubated with the oxidative
fluorescent probes dihydroethidium (DHE, 5 μM) or MitoSOX
(5 μM) for 1 h subsequent to the L-Hcy, paraquat, or rotenone
treatment. Fluorescence was quantified in a microplate reader
(dichlorofluorescein (DCF), λex/em=420/520; 2-hydroxyethidium,
λex/em=510/605 nm; MitoSOX, λex/em=510/580 nm).

Cell viability

Cell viability was assessed with trypan blue staining or with the 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay. For the MTT assay cells were incubated with thiazolyl blue
tetrazolium (0.4 mg/ml) in M199 for 3 h at 37 °C. Mitochondrial-
dependent tetrazolium reduction to formazan was measured by
reading optical density at 540 nm.

Cbl protection against O2
•−-generating insult L-Hcy, paraquat, or

rotenone

Preconfluent HAEC were incubated for 24 h in the absence or
presence of CNCbl (500 pM–10 μM) before addition of L-Hcy (100 or
150 μM), paraquat (1.5 mM), or rotenone (5 μM). For some experi-
ments SOD (3 μM) was added at the time of paraquat addition or
apocynin (0.1 mM) was added 30 min before adding L-Hcy or
paraquat. Cells were incubated for 24 h with L-Hcy, H2O2, or paraquat
or for 1 h with rotenone. ROS and cell viability were assessed as
described above.

DETC

Pre-confluent HAEC were incubated for 24 h in the absence or
presence of CNCbl and then subjected to 10 mM DETC for 2 h. This
concentration has been previously shown to inhibit Cu/Zn-SOD
activity by up to 50% and to increase vascular O2

•−[30].

DNA and Cbl quantification

Confluent cells were harvested in lysis buffer (50 mM Tris, pH 7.4,
0.5% Triton X-100) and DNA was quantified using the CyQuant cell
proliferation kit (Roche). Cbl was quantified using the SimulTRAC
radioassay for vitamin B12 and folate by MP Biomedicals (Orangeburg,
NY, USA) according to the manufacturer's specifications.

Apoptosis measurement

To detect apoptotic cell death, cells were seeded onto six-well plates
and pretreatedwith orwithout CNCbl (10–100 nM) for 24 h. Cells were
washed and then incubated in the absence or presence of L-Hcy for 18 h.
Apoptosis was assessed using the Cell Death Detection ELISA (Roche)
according to the manufacturer's specifications.

General solution preparation

Thiol solutions were prepared immediately before use and the
concentrations were determined by the Ellman method [29]. A fresh
solution of H2O2 was prepared before experiments and the concentra-
tion determined spectrophotometrically (ε240 nm=43.6 M−1 cm−1

[31]). The concentration of the stock solution of CNCbl was determined
by the dicyanocobalamin test (ε368 nm=30.4 mM−1 cm−1[32]).

Statistics

All experiments were carried out using at least three separate cell
clones. Results are expressed as means±SEM. Statistical comparisons
were carried out using ANOVA with the Bonferroni post hoc test.
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Fig. 2. Effect of exogenous CNCbl on intracellular Cbl content. (A) Preconfluent HAEC
were incubated with 0.2 nM 57Co-CNCbl for up to 24 h and then harvested at various
time points. The intracellular Cbl uptake was determined by counting the cell-
associated radioactivity. Data represent the mean±SEM; N=3. (B) Preconfluent HAEC
were incubated with or without varying concentrations of CNCbl for 24 h, and
intracellular Cbl content was determined by the SimulTRAC radioassay. Data represent
the mean±SEM; N=3.
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Results

Cbl protects against elevated O2
•− levels induced by Hcy exposure

Treatment of HAEC with varying concentrations of L-Hcy induced a
concentration-dependent increase in ROS detected by increasing DCF
fluorescence, a general probe for ROS. L-Hcy (100 μM) elicited a
significant increase in ROS compared to control (Fig. 1). To verify that
the ROS increase was an L-Hcy-specific effect, HAEC were incubated for
48 hwith a range of thiols (glutathione, L-cysteine, D-Hcy, L-Hcy, and β-
mercaptoethanol (βME)) at 0.1 mM. Only L-Hcy elicited a significant
increase in DCF fluorescence (Supplementary Fig. S1A), concomitant
with a significant decrease in cell viability as measured using the MTT
assay (Fig. S1B).

Before determining the effect of vitamin B12 (CNCbl) on L-Hcy-
dependent ROS levels, we assessed the concentration- and time-
dependent uptake of CNCbl byHAEC. IncubatingHAECwith 57Co-labeled
CNCbl (0.2 nM) induced a time-dependent increase in intracellular
CNCbl (Fig. 2A). Increasing the CNCbl in the medium (0.1–10 μM
unlabeled Cbl) led to higher intracellular Cbl levels after 24 h (Fig. 2B).
A 24-h incubation time with CNCbl was selected as an appropriate time
for all subsequent experiments.

Exposing HAEC to L-Hcy (150 μM) over 48 h induced a 1.25-fold
increase in DCF fluorescence (Fig. 3A) that correlated with an ~25%
decrease in cell viability (Fig. 3B).To assess the effects of CNCbl on the L-
Hcy-dependent ROS production and the L-Hcy-dependent decrease in
cell viability, HAECwerepreincubatedwith increasing concentrations of
CNCbl for 24 h before the cells were treated with L-Hcy (150 μM). To
ensure that extracellular Cbl was not responsible for the Cbl effects on
ROS, the cells were washed after Cbl treatment and the medium was
replaced before further treatments. Preincubation of HAEC with CNCbl
prevented the L-Hcy-dependent increase in ROS and decrease in cell
viability in a concentration-dependent fashion (Fig. 3). CNCbl at 10 nM
completely inhibited both the L-Hcy-dependent ROS increase (pb0.05)
and the L-Hcy-dependent decrease in cell viability (pb0.05). L-Hcy
(150 μM) treatment of cells over a 24-h period resulted in an ~20%
decrease in cell viability; hence, subsequent experiments were
conducted using a 24-h L-Hcy treatment protocol, unless otherwise
stated.

Exposing cells to L-Hcy is reported to increase intracellularO2
•− levels

[21,22]. To determine if O2
•− is indeed generated in our system, O2

•−

levels after exposure to L-Hcy were assessed using the O2
•−-specific

probeDHE,whichupon reactingwithO2
•− yields thefluorescent product

2-hydroxyethidium. Incubation of HAEC with L-Hcy (150 μM) for 24 h
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Fig. 1. L-Hcy-induced ROS increase. Preconfluent HAEC were incubated with increasing
concentrations of L-Hcy in the presence of 3 μM DCFA. After 48 h ROS production was
assessed fluorimetrically. Positive control was exposed to 200 μM H2O2 (♦). Data are
expressed as the mean±SEM; N=3. *pb0.05 compared to control cells not
exposed to L-Hcy.
induced a 1.6-fold increase in hydroxyethidium fluorescence (Fig. 4 and
Supplementary Fig. S2). This increase was completely inhibited by
preincubation of the cells with 10 nM CNCbl (pb0.05), the antioxidant
apocynin (0.1 mM), or SOD itself (3 μM) (Fig. 4 and Supplementary
Figs. S2 and S3).

Cbl protects against elevated mitochondrial O2
•− levels

To investigate the subcellular localization of the L-Hcy-induced
increase in O2

•−, cells were assayed with MitoSOX, a mitochondrial-
specific O2

•− probe. Incubation of HAEC with L-Hcy (150 μM) for 24 h
elicited a moderate but significant increase in MitoSOX fluorescence,
which was completely inhibited by preincubation of the cells with
CNCbl (50 nM) (Fig. 5). Moreover, treatment of HAEC with the
mitochondrial electron transport chain inhibitor rotenone (5 μM)
induced an increase in mitochondrial O2

•− that was also significantly
inhibited by preincubation with CNCbl (100 nM) (Fig. 5 and
Supplementary Fig. S4).

Cbl protects against elevated O2
•− levels induced by paraquat

Toassess the ability of CNCbl to protect against a direct source of O2
•−,

HAECwere exposed to paraquat (1.5 mM, 24 h), a well-established O2
•−

source [33]. Paraquat induced a 1.5-fold increase in O2
•− production

measured by hydroxyethidium fluorescence, which was prevented by
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CNCbl pretreatment (10 nM), apocynin (0.1 mM), and SOD (3 μM)
(Fig. 6A). The paraquat-induced increase in oxidative stress correlated
with a 30% decrease in cell viability (Fig. 6B). Preincubation with CNCbl
for 24 h or treatmentwith apocynin (0.1 mM) or SOD (3 μM) protected
HAEC against the O2

•−-dependent decrease in cell viability (Fig. 6B).

Cbl attenuates elevated O2
•− levels resulting from Cu/Zn-SOD inhibition

To explore the possibility that Cbl can act as a second line of defense
when O2

•− production overwhelms the SOD capacity, we inhibited
Cu/Zn-SOD by treating HAEC with DETC (10 mM) for 2 h with or
without CNCbl pretreatment. Incubationwith DETC elicited an increase
in DHE fluorescence indicative of higher intracellular O2

•− levels.
Pretreatment with CNCbl (100 nM) significantly reduced the DETC-
induced DHE fluorescence (Fig. 7), providing support for CNCbl's ability
to scavenge O2

•− in SOD-compromised cells.

Cbl protects against Hcy-dependent increase in apoptotic cell death

Exposing HAEC to L-Hcy (150 μM) for 24 h caused a significant
decrease in cell viability asmeasured by theMTTassay (Fig. 8A). Because
the MTT assay is a measure of mitochondrial function and metabolic
activity, cell death was directly assessed by trypan blue staining, which
corresponded to the MTT results (Fig. 8B). Finally, to characterize the L-
Hcy-induced cell death, apoptosis was assessed by measuring cytosolic
fragmented DNA with an ELISA-based cell death assay (Roche). HAEC
showed a significant increase in apoptotic cell death in response to L-Hcy
(150 μM) for 18 h (Fig. 9). Because both CNCbl and apocynin prevented
the L-Hcy-induced decrease in cell viability, as measured by the MTT
assay(Fig. 8A), and the increase in cell death, asmeasuredby trypanblue
staining (Fig. 8B) or ELISA (Fig. 9), it appears that CNCbl provides
protection against apoptosis.

Discussion

Vitamin B12 is an essential micronutrient required for one-carbon
metabolism and branched-amino-acid catabolism. Recent studies in our
laboratories showed that Cbl(II) can directly scavenge O2

•− to form
aquacobalamin (and hydrogen peroxide) extremely rapidly, at a rate
approaching that of SOD-catalyzed dismutation (7×108 vs
2×109 M− 1 s− 1) [6]. Substantial free (non-protein-bound)
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intracellular Cbl can be achieved with supplementation [36–39]. Upon
entering cells the cobalt(III) center of Cbl is reduced to cobalt(II) (= Cbl
(II)) before binding to the B12-dependent enzymes [40]. The ability of
cells to re-reduce free aquacobalamin to Cbl(II) (“aquacobalamin
reductase activity”) is well established [41–46], therefore providing
the theoretical basis for Cbl-mediated catalytic O2

•− scavenging. This led
us to speculate that Cbl might protect cells from oxidative stress by
efficient O2

•− scavenging.
In our studies, intracellular O2

•− was generated by treating HAEC
with paraquat, and the ability of CNCbl to protect cells against damage
was assessed. CNCbl at nanomolar concentrations could prevent the
increase in O2

•− levels and the associated reduction in cell viability
(Fig. 6). The inhibitory effects of CNCbl were comparable to those
observed with apocynin or SOD itself (Fig. 6).

The inhibition of Cu/Zn-SOD with DETC treatment also elevated
cytosolic O2

•− levels. DETC-treated cells were round and loosely
attached compared to spindle-shaped control cells, demonstrating the
dramatic effect of inhibiting Cu/Zn-SOD in HAEC. Pretreating HAEC
with CNCbl (100 nM) attenuated the DETC-induced increase in O2

•−

and also partially reverted the altered cell morphology, which further
supports the direct effect of Cbl on intracellular O2

•−.
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being exposed to 150 μM L-Hcy in the presence or absence of apocynin (0.1 mM).
Shown also are corresponding data for apocynin and apocynin+CNCbl. Apoptotic DNA
fragmentation was measured by ELISA. Data are expressed as the mean±SEM; N=4;
*pb0.05 with respect to control; #pb0.05 with respect to L-Hcy-treated HAEC.
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Additionally, CNCbl could blunt the generation of O2
•− by Hcy. Hcy

has been shown to induce an increase in intracellular O2
•− levels [21,22].

Moreover, elevated Hcy is associated with vascular oxidative stress.
Normally, plasma Hcy levels are maintained below 12 μM; however, in
clinical hyperhomocysteinemia, Hcy levels can exceed 100 μM in severe
instances [47]. To ensure a universal response among our individual
HAEC clones, our experiments used a high but still pathophysiological
range of Hcy concentrations (100–150 μM), which increased O2

•− levels
and resulted in anassociated lossof cell viability. Aswithparaquat, these
effects were completely inhibited by pretreating HAEC with CNCbl
(10 nM) or by treating the cells with apocynin or SOD itself.

The increase in L-Hcy-induced cell death correlated with increased
apoptotic cell death. L-Hcy induces apoptosis in human bone marrow
stromal cells [48], human umbilical vein endothelial cells [49,50], and
endothelial progenitor cells [51]. It also inhibits growth [52] and reduces
cell viability in HAEC [53]. Our results are consistent with previous
studies in other endothelial cell lines; however, to our knowledge, we
are the first to show L-Hcy induced apoptotic cell death in primary
cultures of HAEC. L-Hcy-induced apoptosis was prevented by apocynin
or by pretreating HAEC with CNCbl (50 nM).

The protective effects of Cbl against L-Hcy-induced oxidative stress
are perhaps not surprising, given the cofactor role of Cbl in Hcy
metabolism. However, our experiments indicate that Cbl shows effects
against O2

•− generated in response to a variety of insults apart from Hcy
(i.e., paraquat, rotenone, DETC). Such results indicate that Cbl protection
against Hcy-mediated oxidative stressmay not be due to increasingHcy
metabolism alone and that Cbl can act to protect against oxidative stress
in a general manner. These data, combined with our previous in vitro
studies showing a direct and fast reaction between Cbl(II) and O2

•−,
strongly implicate Cbl as an intracellularO2

•− scavenger. However, in the
case of Hcy, we cannot rule out the involvement of other mechanisms
independent of O2

•− scavenging in the CNCbl-mediated protective
effects.

An important finding from our studies is the effectiveness of CNCbl
against mitochondrial oxidative stress. Oxidative stress-associated
mitochondrial dysfunction is a common feature in cardiovascular
pathologies [54,55] and there is considerable interest in developing
mitochondrial-specific antioxidants [55,56]. Hcy increases mitochon-
drial oxidative stress in brain [57] and cardiac myocytes [58]. Cbl is
present in the mitochondria (Cbl-dependent L-methylmalonyl-CoA
mutase is a mitochondrial enzyme) and ~80% of Cbl is in its Cbl(II)
form [2]. In endothelial cells the mitochondrial AdoCbl concentration
is fourfold higher than the cytosolic MeCbl concentration [59] and a
substantial fraction of mitochondrial Cbl is not protein bound [60]. In
our studies, CNCbl treatment effectively inhibited the generation of
mitochondrial O2

•− by Hcy or rotenone treatment (Fig. 5).
DHE remains oneof themostwidelyusedprobes for detection ofO2

•−

in live cells, although 2-hydroxyethidium, the specific reaction product
between DHE and O2

•−, is not the only DHE fluorescent oxidation
product. Ethidium, a one-electron oxidation product of DHE, has an
emission spectrum with a 45% overlap with that of 2-hydroxyethidium
[61]. The same applies for the mitochondria-targeted ethidium
derivative MitoSOX and its oxidation products [61]. Therefore, the
specificity of DHE for detecting O2

•− levels has been questioned.
However, our conclusions are not solely based on the effect of Cbl on
DHE or MitoSOX oxidation. The oxidative-stress-inducing insults used
in our studies have been shown to increase O2

•− levels in previous
studies using lucigenin chemiluminescence or EPR [21,22,30,62,63], and
these data correlate well with an increase in DHE-derived fluorescence.
Thus, because O2

•− is the predominant ROS produced in these systems,
the Cbl effectwasmimicked by SOD, and our previous studies show that
Cbl reacts very rapidly with O2

•−, we conclude that the Cbl-dependent
decrease in DHE fluorescence is due to a direct Cbl-mediated O2

•−-
scavenging mechanism.

It is likely that Cbl has biological roles beyond its ability to act as a
cofactor for the two mammalian B12-dependent enzyme reactions
(reviewed by Solomon [19]). Cbl supplementation can be beneficial in
treating a range of inflammatory and viral-based diseases associated
with oxidative stress [10–16] and alsomodulates the immune response
[64,65]. Moreover, high doses of Cbl have been used to treat pernicious
anemia for decades with no apparent toxicity [66]. Cbl therapy
normalizes levels of TNF-α and epidermal growth factor in Cbl-deficient
patients [64], by a mechanism(s) that is currently unclear. Thus, there
are intriguing clinical implications for our observed association between
Cbl and intracellular O2

•− levels. Our results support the hypothesis that
Cbl canact as a second lineof defensewhenO2

•−productionoverwhelms
the SOD protection system. This perhaps accounts for significantly
increased oxidative damage markers in patients with inherited
disorders of intracellular Cbl metabolism [67].

Our data show that physiologically relevant concentrations (up to
10−7 M are achievable in plasma [34,35]) of CNCbl (the common form
of Cbl in vitamin supplements) effectively protect against increased
intracellular levels of O2

•−, both in the cytosol and in the mitochondria,
resulting in a concomitant reduction in cell death. Importantly, these
effects were found to be independent of Hcy metabolism. These results,
combined with the in vitro kinetic data demonstrating that Cbl(II)
efficiently scavengesO2

•−[6], suggest that direct scavengingofO2
•−byCbl

is an important mechanism by which Cbl protects against intracellular
oxidative stress. Our results have important implications both in regard
to the high percentage of the elderly who are B12 deficient and in the
treatment of chronic inflammatory diseases associated with oxidative
stress. These results encourage further studies with animal models to
test the efficacy of Cbl as a O2

•− scavenger in vivo.
Supplementarymaterials related to this article can be found online

at doi:10.1016/j.freeradbiomed.2011.05.034.
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